A nonlinear transmissibility function-based diagnosis approach for multi-disks rub-impact faults in rotor systems with nonlinear supports

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number112418
Journal / PublicationMechanical Systems and Signal Processing
Volume228
Online published5 Feb 2025
Publication statusPublished - 1 Apr 2025

Abstract

For diagnosing rub-impact faults in rotor systems, numerous advanced methods leveraging nonlinear vibration features such as Frequency Response Function (FRF), Output Frequency Response (OFR), and Transmissibility Function (TF) have been developed and implemented. Addressing limitations in existing methods, such as the need for reference data from healthy rotors, neglect of nonlinear supports, and focus on single-disk rub-impact faults, this paper introduces a novel systematic approach using nonlinear TF-based indexes. Initially, a comprehensive nonlinear rotor dynamic model is established, incorporating unbalance forces, rub-impact forces, and nonlinear support forces. The nonlinear TF is then defined through nonlinear output spectra. By exciting the rotor system four times with varying unbalance force magnitudes and focusing on a single-disk rotor sub-model, two fault features based on nonlinear TFs and rub-impact fault forces are identified. This innovative approach, featuring sensitive fault indexes and detailed operational procedures, is validated through extensive numerical studies and experimental comparisons on a lab rotor system with multi-disk rub-impact faults and nonlinear supports. The study presents a groundbreaking and effective method for detecting and localizing multi-disk rub-impact faults in rotor systems, even with nonlinear supports. © 2025 Elsevier Ltd

Research Area(s)

  • Fault diagnosis, Nonlinear support, Rotor system, Rub-impact fault, Transmissibility function

Citation Format(s)