A Heuristic Rule Reduction Approach to Software Fault-proneness Prediction
Research output: Chapters, Conference Papers, Creative and Literary Works › RGC 32 - Refereed conference paper (with host publication) › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Title of host publication | APSEC 2012 |
Subtitle of host publication | Proceedings of the 19th Asia-Pacific Software Engineering Conference |
Editors | Karl R.P.H. Leung, Pornsiri |
Publisher | Institute of Electrical and Electronics Engineers, Inc. |
Pages | 838-847 |
Volume | 1 |
ISBN (print) | 9780769549224 |
Publication status | Published - Dec 2012 |
Externally published | Yes |
Publication series
Name | |
---|---|
ISSN (Print) | 1530-1362 |
Conference
Title | 19th Asia-Pacific Software Engineering Conference (APSEC 2012) |
---|---|
Place | Hong Kong |
City | Hong Kong |
Period | 4 - 7 December 2012 |
Link(s)
Abstract
Background: Association rules are more comprehensive and understandable than fault-prone module predictors (such as logistic regression model, random forest and support vector machine). One of the challenges is that there are usually too many similar rules to be extracted by the rule mining. Aim: This paper proposes a rule reduction technique that can eliminate complex (long) and/or similar rules without sacrificing the prediction performance as much as possible. Method: The notion of the method is to removing long and similar rules unless their confidence level as a heuristic is high enough than shorter rules. For example, it starts with selecting rules with shortest length (length=1), and then it continues through the 2nd shortest rules selection (length=2) based on the current confidence level, this process is repeated on the selection for longer rules until no rules are worth included. Result: An empirical experiment has been conducted with the Mylyn and Eclipse PDE datasets. The result of the Mylyn dataset showed the proposed method was able to reduce the number of rules from 1347 down to 13, while the delta of the prediction performance was only. 015 (from. 757 down to. 742) in terms of the F1 prediction criteria. In the experiment with Eclipsed PDE dataset, the proposed method reduced the number of rules from 398 to 12, while the prediction performance even improved (from. 426 to. 441.) Conclusion: The novel technique introduced resolves the rule explosion problem in association rule mining for software proneness prediction, which is significant and provides better understanding of the causes of faulty modules.
Research Area(s)
- association rule mining, data mining, defect prediction, empirical study, software quality
Citation Format(s)
A Heuristic Rule Reduction Approach to Software Fault-proneness Prediction. / Monden, Akito; Keung, Jacky; Morisaki, Shuji et al.
APSEC 2012: Proceedings of the 19th Asia-Pacific Software Engineering Conference. ed. / Karl R.P.H. Leung; Pornsiri. Vol. 1 Institute of Electrical and Electronics Engineers, Inc., 2012. p. 838-847 6462753.
APSEC 2012: Proceedings of the 19th Asia-Pacific Software Engineering Conference. ed. / Karl R.P.H. Leung; Pornsiri. Vol. 1 Institute of Electrical and Electronics Engineers, Inc., 2012. p. 838-847 6462753.
Research output: Chapters, Conference Papers, Creative and Literary Works › RGC 32 - Refereed conference paper (with host publication) › peer-review