A Heuristic Rule Reduction Approach to Software Fault-proneness Prediction

Research output: Chapters, Conference Papers, Creative and Literary Works (RGC: 12, 32, 41, 45)32_Refereed conference paper (with ISBN/ISSN)peer-review

8 Scopus Citations
View graph of relations

Author(s)

  • Akito Monden
  • Jacky Keung
  • Shuji Morisaki
  • Yasutaka Kamei
  • Ken-ichi Matsumoto

Detail(s)

Original languageEnglish
Title of host publicationAPSEC 2012
Subtitle of host publicationProceedings of the 19th Asia-Pacific Software Engineering Conference
EditorsKarl R.P.H. Leung, Pornsiri
PublisherIEEE
Pages838-847
Volume1
ISBN (Print)9780769549224
Publication statusPublished - Dec 2012
Externally publishedYes

Publication series

Name
ISSN (Print)1530-1362

Conference

Title19th Asia-Pacific Software Engineering Conference (APSEC 2012)
PlaceHong Kong
CityHong Kong
Period4 - 7 December 2012

Abstract

Background: Association rules are more comprehensive and understandable than fault-prone module predictors (such as logistic regression model, random forest and support vector machine). One of the challenges is that there are usually too many similar rules to be extracted by the rule mining. Aim: This paper proposes a rule reduction technique that can eliminate complex (long) and/or similar rules without sacrificing the prediction performance as much as possible. Method: The notion of the method is to removing long and similar rules unless their confidence level as a heuristic is high enough than shorter rules. For example, it starts with selecting rules with shortest length (length=1), and then it continues through the 2nd shortest rules selection (length=2) based on the current confidence level, this process is repeated on the selection for longer rules until no rules are worth included. Result: An empirical experiment has been conducted with the Mylyn and Eclipse PDE datasets. The result of the Mylyn dataset showed the proposed method was able to reduce the number of rules from 1347 down to 13, while the delta of the prediction performance was only. 015 (from. 757 down to. 742) in terms of the F1 prediction criteria. In the experiment with Eclipsed PDE dataset, the proposed method reduced the number of rules from 398 to 12, while the prediction performance even improved (from. 426 to. 441.) Conclusion: The novel technique introduced resolves the rule explosion problem in association rule mining for software proneness prediction, which is significant and provides better understanding of the causes of faulty modules.

Research Area(s)

  • association rule mining, data mining, defect prediction, empirical study, software quality

Citation Format(s)

A Heuristic Rule Reduction Approach to Software Fault-proneness Prediction. / Monden, Akito; Keung, Jacky; Morisaki, Shuji; Kamei, Yasutaka; Matsumoto, Ken-ichi.

APSEC 2012: Proceedings of the 19th Asia-Pacific Software Engineering Conference. ed. / Karl R.P.H. Leung; Pornsiri. Vol. 1 IEEE, 2012. p. 838-847 6462753.

Research output: Chapters, Conference Papers, Creative and Literary Works (RGC: 12, 32, 41, 45)32_Refereed conference paper (with ISBN/ISSN)peer-review