TY - JOUR
T1 - A Generalized Surface Chalcogenation Strategy for Boosting the Electrochemical N2 Fixation of Metal Nanocrystals
AU - Yang, Chengyong
AU - Huang, Bolong
AU - Bai, Shuxing
AU - Feng, Yonggang
AU - Shao, Qi
AU - Huang, Xiaoqing
PY - 2020/6/18
Y1 - 2020/6/18
N2 - Electrocatalytic nitrogen reduction reaction (NRR) is a promising process relative to energy-intensive Haber–Bosch process. While conventional electrocatalysts underperform with sluggish paths, achieving dissociation of N2 brings the key challenge for enhancing NRR. This study proposes an effective surface chalcogenation strategy to improve the NRR performance of pristine metal nanocrystals (NCs). Surprisingly, the NH3 yield and Faraday efficiency (FE) (175.6 ± 23.6 mg h–1 g–1Rh and 13.3 ± 0.4%) of Rh-Se NCs is significantly enhanced by 16 and 15 times, respectively. Detailed investigations show that the superior activity and high FE are attributed to the effect of surface chalcogenation, which not only can decrease the apparent activation energy, but also inhibit the occurrence of the hydrogen evolution reaction (HER) process. Theoretical calculations reveal that the strong interface strain effect within core@shell system induces a critical redox inversion, resulting in a rather low valence state of Rh and Se surface sites. Such strong correlation indicates an efficient electron-transfer minimizing NRR barrier. Significantly, the surface chalcogenation strategy is general, which can extend to create other NRR metal electrocatalysts with enhanced performance. This strategy open a new avenue for future NH3 production for breakthrough in the bottleneck of NRR. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
AB - Electrocatalytic nitrogen reduction reaction (NRR) is a promising process relative to energy-intensive Haber–Bosch process. While conventional electrocatalysts underperform with sluggish paths, achieving dissociation of N2 brings the key challenge for enhancing NRR. This study proposes an effective surface chalcogenation strategy to improve the NRR performance of pristine metal nanocrystals (NCs). Surprisingly, the NH3 yield and Faraday efficiency (FE) (175.6 ± 23.6 mg h–1 g–1Rh and 13.3 ± 0.4%) of Rh-Se NCs is significantly enhanced by 16 and 15 times, respectively. Detailed investigations show that the superior activity and high FE are attributed to the effect of surface chalcogenation, which not only can decrease the apparent activation energy, but also inhibit the occurrence of the hydrogen evolution reaction (HER) process. Theoretical calculations reveal that the strong interface strain effect within core@shell system induces a critical redox inversion, resulting in a rather low valence state of Rh and Se surface sites. Such strong correlation indicates an efficient electron-transfer minimizing NRR barrier. Significantly, the surface chalcogenation strategy is general, which can extend to create other NRR metal electrocatalysts with enhanced performance. This strategy open a new avenue for future NH3 production for breakthrough in the bottleneck of NRR. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
KW - metal nanocrystals
KW - nitrogen reduction reaction
KW - rhodium
KW - surface chalcogenation
KW - universality
UR - http://www.scopus.com/inward/record.url?scp=85084451232&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85084451232&origin=recordpage
U2 - 10.1002/adma.202001267
DO - 10.1002/adma.202001267
M3 - RGC 21 - Publication in refereed journal
C2 - 32390237
SN - 0935-9648
VL - 32
JO - Advanced Materials
JF - Advanced Materials
IS - 24
M1 - 2001267
ER -