A Generalized Loss Function for Crowd Counting and Localization
Research output: Chapters, Conference Papers, Creative and Literary Works › RGC 32 - Refereed conference paper (with host publication) › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
Subtitle of host publication | CVPR 2021 |
Publisher | Institute of Electrical and Electronics Engineers, Inc. |
Pages | 1974-1983 |
ISBN (electronic) | 9781665445092 |
ISBN (print) | 9781665445108 |
Publication status | Published - 2021 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
ISSN (electronic) | 2575-7075 |
Conference
Title | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021) |
---|---|
Location | Virtual |
Period | 19 - 25 June 2021 |
Link(s)
Abstract
Previous work [40] shows that a better density map representation can improve the performance of crowd counting. In this paper, we investigate learning the density map representation through an unbalanced optimal transport problem, and propose a generalized loss function to learn density maps for crowd counting and localization. We prove that pixel-wise L2 loss and Bayesian loss [29] are special cases and suboptimal solutions to our proposed loss function. A perspective-guided transport cost function is further proposed to better handle the perspective transformation in crowd images. Since the predicted density will be pushed toward annotation positions, the density map prediction will be sparse and can naturally be used for localization. Finally, the proposed loss outperforms other losses on four large-scale datasets for counting, and achieves the best localization performance on NWPU-Crowd and UCF-QNRF.
Citation Format(s)
A Generalized Loss Function for Crowd Counting and Localization. / Wan, Jia; Liu, Ziquan; Chan, Antoni B.
Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition: CVPR 2021. Institute of Electrical and Electronics Engineers, Inc., 2021. p. 1974-1983 (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition).
Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition: CVPR 2021. Institute of Electrical and Electronics Engineers, Inc., 2021. p. 1974-1983 (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition).
Research output: Chapters, Conference Papers, Creative and Literary Works › RGC 32 - Refereed conference paper (with host publication) › peer-review