A fully integrated architecture for fast and accurate programming of floating gates over six decades of current

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

28 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number5437216
Pages (from-to)953-962
Journal / PublicationIEEE Transactions on Very Large Scale Integration (VLSI) Systems
Volume19
Issue number6
Publication statusPublished - Jun 2011
Externally publishedYes

Abstract

This paper presents an on-chip system with digital serial peripheral interface (SPI) interface that enables accurate programming of floating gate arrays at a high speed. The main component allowing this speedup is a floating point current measuring analog-to-digital convertor (ADC). The ADC comprises a wide range logarithmic transimpedance amplifier (TIA) followed by a linear ramp ADC. The TIA operates over seven decades of current going down to sub-pA levels. It incorporates an adaptive biasing scheme to save power. The topology provides a relatively temperature independent measurement of the floating-gate voltage. The TIA-ADC combination operates over six decades at a thermal noise limited accuracy of 9.5 bits when average conversion time is around 500 μs. The system features level-shifters and selection circuitry at the periphery of the floating gate array, current-steering digital-to-analog converters (DACs) to set gate and drain voltages, and SPI for a microprocessor or field-programmable gate array (FPGA). Algorithms using either pulse-width modulation or drain voltage modulation can be implemented on this platform. We present data for this system from 0.5 μm AMI and 0.35 μ m TSMC processes. © 2010 IEEE.

Research Area(s)

  • Floating-gate programming, floating-point analog-to-digital converter (ADC), hot-electron injection, logarithmic compression, low power, programmable analog

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].

Citation Format(s)