A diamond nanocone array for improved osteoblastic differentiation

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

16 Scopus Citations
View graph of relations

Author(s)

  • E. Y. W. Chong
  • C. Y. P. Ng
  • V. W. Y. Choi
  • L. Yan
  • Y. Yang
  • K. W. K. Yeung
  • X. F. Chen

Detail(s)

Original languageEnglish
Pages (from-to)3390-3396
Journal / PublicationJournal of Materials Chemistry B
Volume1
Issue number27
Online published20 May 2013
Publication statusPublished - 21 Jul 2013

Abstract

Efficient delivery of biomolecules to cells is of great importance in biology and medicine. To achieve this, we designed a novel type of densely packed diamond nanocone array to conveniently transport molecules to the cytoplasm of a great number of cells. The nanocone array was fabricated by depositing a thin layer of diamond film on a silicon substrate followed by bias-assisted reactive ion etching. The height of the diamond nanocones varied from 200 nm to 1 μm with tip radii of approximately 10 nm. Our fluorescein and propidium iodide staining results clearly demonstrated that dramatically enhanced delivery of fluorescein into cells was realized without leading to noticeable cell death with the aid of nanocone treatment. As a test case of the drug delivery application of the device, MC-3T3 cells in differentiation medium were applied to the nanocone array for enhanced intracellular delivery of the medium. This was confirmed by the fact that nanocone treated cells experienced much higher differentiation ability at an early stage in comparison with untreated cells. Overall, the results indicate that the diamond nanocone array provides a very simple but yet very effective approach to achieve delivery of molecules to a large number of cells. © The Royal Society of Chemistry 2013.

Citation Format(s)

A diamond nanocone array for improved osteoblastic differentiation. / Chong, E. Y. W.; Ng, C. Y. P.; Choi, V. W. Y. et al.
In: Journal of Materials Chemistry B, Vol. 1, No. 27, 21.07.2013, p. 3390-3396.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review