Abstract
Expansion of high-voltage dc (HVdc) systems to multi-terminal HVdc (MT-HVdc) systems/grids considerably increases the short-circuit levels. In order to protect the emerging MT-HVdc systems/grids against fault currents, proper dc fault current limiters (FCLs) must be developed. This paper proposes an innovative high inductance solid-state dc-reactor-based FCL (HISS-DCRFCL) to be used in HVdc applications. In fact, during the HISS-DCRFCL normal operation, its inductance value is extremely low, and its value becomes considerably high during the fault period, which decreases the fault current amplitude. The proposed HISS-DCRFCL performance is analyzed by MATLAB/Simulink and the simulation results are verified and confirmed by laboratory experimental results using a scaled-down laboratory prototype setup. © 1986-2012 IEEE.
Original language | English |
---|---|
Article number | 8620515 |
Pages (from-to) | 720-728 |
Journal | IEEE Transactions on Power Delivery |
Volume | 34 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Apr 2019 |
Externally published | Yes |
Bibliographical note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].Research Keywords
- dc-reactor
- fault current limiters
- HVdc
- protection
- smart grids