A Constant-Power Battery Charger With Inherent Soft Switching and Power Factor Correction

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

22 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)1262-1269
Journal / PublicationIEEE Transactions on Power Electronics
Volume18
Issue number6
Publication statusPublished - Nov 2003
Externally publishedYes

Abstract

A battery charging circuit, which operates as a constant power source, is proposed in this paper. By maintaining a constant output power throughout the charging process, the circuit reduces the size of thermal installation which would normally be required in the cases of constant-voltage or constant-current charging. The proposed circuit takes the form of a half-bridge converter with an additional small inductor and two extra diodes connected in parallel to two dividing capacitors. Constant power delivery is achieved by the discontinuous-voltage-mode operation of the two dividing capacitors, each of which is connected in parallel with a diode. The circuit enjoys low voltage and current stresses, and achieves soft switching with no extra components. When used off-line, the converter maintains a high input power factor and a low level of input current harmonic distortion that meets international regulations. All the above characteristics are determined only by the values of the circuit parameters, the control mechanism being noncritical. A 12 V 65 W prototype was built to demonstrate the merits of this circuit.

Research Area(s)

  • Battery charger, Power factor correction, Switching converters, Zero-voltage-switching