TY - JOUR
T1 - A bernstein-type inequality for the jacobi polynomial
AU - Chow, Yunshyong
AU - Gatteschi, L.
AU - Wong, R.
PY - 1994/7
Y1 - 1994/7
N2 - Let be the Jacobi polynomial of degree n.For it is proved that q = max(α, β)When α = β = 0, this reduces to a sharpened form of the well-known Bernstein inequality for the Legendre polynomial. © 1994 American Mathematical Society.
AB - Let be the Jacobi polynomial of degree n.For it is proved that q = max(α, β)When α = β = 0, this reduces to a sharpened form of the well-known Bernstein inequality for the Legendre polynomial. © 1994 American Mathematical Society.
KW - Bernstein inequality
KW - Hypergeometric function
KW - Jacobi polynomial
UR - http://www.scopus.com/inward/record.url?scp=0001462465&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-0001462465&origin=recordpage
U2 - 10.1090/S0002-9939-1994-1209419-X
DO - 10.1090/S0002-9939-1994-1209419-X
M3 - RGC 21 - Publication in refereed journal
SN - 0002-9939
VL - 121
SP - 703
EP - 709
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 3
ER -