3D tomography integrating view registration and its application in highly turbulent flames
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 429-440 |
Journal / Publication | Combustion and Flame |
Volume | 221 |
Online published | 28 Aug 2020 |
Publication status | Published - Nov 2020 |
Externally published | Yes |
Link(s)
DOI | DOI |
---|---|
Document Link | |
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85089844043&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(48a9da50-a145-4a59-bfd5-2f8de31eaf5c).html |
Abstract
Recently, reconstruction integrating view registration (RIVR) has been demonstrated as an improved method to significantly enhance the accuracy of three-dimensional (3D) measurements in nonreactive flows. This work extended the RIVR method to 3D measurements of highly turbulent reactive flows with two specific goals. The first goal was to examine if the RIVR method can be effectively applied to highly turbulent flame structures, which display distinctively different spatial features from nonreactive flows. This examination of RIVR was performed specifically using two performance metrics, accuracy and spatial resolution. The second goal was to quantify the end benefits the RIVR can bring about on key flame properties involved in turbulence-chemistry interaction, such as flame surface density. The results demonstrated that the RIVR method can effectively enhance reconstruction accuracy of the thin flame front marked by CH radicals in 3D distribution. Compared to past methods, the RIVR method reduced the reconstruction errors by ~48% on average and improved the spatial resolution by ~26% on average. Such accuracy enhancement ultimately led to a ~15% improved accuracy on the determination of the 3D flame surface density as an indicator of the total burning rate. ©2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Research Area(s)
- 3D flame measurement, Tomography, View registration
Citation Format(s)
3D tomography integrating view registration and its application in highly turbulent flames. / Liu, Ning; Zhou, Ke; Ma, Lin.
In: Combustion and Flame, Vol. 221, 11.2020, p. 429-440.
In: Combustion and Flame, Vol. 221, 11.2020, p. 429-440.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review