3D printed N-doped CoCrFeNi high entropy alloy with more than doubled corrosion resistance in dilute sulphuric acid

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

3 Scopus Citations
View graph of relations


Original languageEnglish
Article number8
Journal / Publicationnpj Materials Degradation
Online published31 Jan 2023
Publication statusPublished - 2023



The traditional approaches for improving corrosion resistance of alloys typically lead to the sacrifice of mechanical properties because the microstructures needed for improving corrosion resistance often contradict those for high strength. Here we demonstrate that selected laser melting (SLM), a net-shape additive manufacture technique, can maintain good mechanical properties while double the corrosion-resistance of a N-doped CoCrFeNi HEA. The SLM processed sample possesses a heterogeneous microstructure with 3D dislocation cells inside each grain. The SLM-induced 3D dislocation cell structure can provide effective diffusion paths to significantly promote Cr outward segregation, forming a thick protective Cr oxide layer, which renders excellent corrosion resistance. Furthermore, Cr segregation along cell boundaries provides numerous sites for nucleation of oxides, and stabilizes the cell structure for good mechanical properties. The strategy discovered here may also be applied to other HEAs with multiple strengthening mechanisms. © The Author(s) 2023.

Research Area(s)

Citation Format(s)

Download Statistics

No data available